

LA-UR-21-26003

Approved for public release; distribution is unlimited.

Title: Nuclear Safeguards and Nondestructive Assay

Author(s): Trahan, Alexis Chanel

Intended for: Computational Physics summer school

Issued: 2021-06-25

Nuclear Safeguards and Nondestructive Assay

LA-UR-21-

Alexis Trahan

June 30, 2021

Nonproliferation and Safeguards Overview (From the INITIAL Module)

Global Nuclear Nonproliferation and Arms Control

GOAL: Prevent nuclear weapon proliferation

decrease number of states/non-state actors attempting to possess nuclear weapons

decrease capabilities of existing nuclear states What can we do?

- Encourage/ensure peaceful nuclear uses
- Secure, safeguard, and/or dispose of dangerous nuclear and radiological material
- Detect and control the proliferation of related WMD technology and expertise

Nuclear Test at the Mururoa atoll, French Polynesia (courtesy *The Atlantic*)

How These Goals Are Achieved

- Nuclear Non-Proliferation Treaty (NPT)
 - → Bans acquisition of nuclear weapons by non-weapon states
- Comprehensive Test Ban Treaty
 - → Bans nuclear explosions
- ☐ Fissile Material (Cutoff) Treaty
 - → Would ban fissile material production

Note: Verification is the key element

Science and technology play a vital role

Fissile Material Production

- Cost and Time make producing Significant Quantities (SQ) of nuclear material is the most difficult step to production of nuclear weapons
- Historically, Special Nuclear Material production for proliferation purposes has been achieved via:
 - Enrichment of uranium
 - Reprocessing of plutonium from spent fuel

Nuclear Material	SQ
Plutonium (<80% Pu-238)	8 kg Pu
Uranium-233	8 kg U-23
HEU (≥20% U-235)	25 kg U-235
LEU (<20% U-235)	75 kg U-235
Natural/Depleted U	10 tons/20 tons
Thorium	20 tons

The Nuclear Fuel Cycle

International Safeguards

- "Delivering Effective Nuclear Verification for World Peace"
- The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons
- Inspect nuclear facilities worldwide, monitor amounts of nuclear materials to ensure that it isn't going to illicit uses
- Work conducted under Comprehensive Safeguards Agreements

International Atomic Energy Agency and LANL

The International Atomic Energy Agency

The International Atomic Energy Agency

- Currently, the IAEA is working to advance the following initiatives (among many others...)
 - Universal acceptance of the Additional Protocol
 - Safeguards-by-design
 - Integrated within a facility's design, covering safeguards and security
 - Unattended monitoring & data integration
 - Robust data management systems to reduce on-site inspector presence
 - State-level Concept
 - Assessing each State as a whole
 - Developing unified and consistent State-Level Approaches
 - Establishing safeguards measures based on path attractiveness rather than simply material attractiveness

LANL Support

Over 50 years of support for the IAEA through...

Technology development

Training

Expertise

Nondestructive Assay

Nondestructive Assay

- NDA is the most commonly employed technique for material accountancy
- A series of gamma or neutron detectors are typically used to measure radiation emitted from the sample of interest
- Energy, timing, and intensity of radiation may be correlated to isotope type and quantity in the sample

- Passive interrogation requires good signal intrinsic to sample (²⁴⁰Pu, ²⁵²Cf)
- Active interrogation requires fissile material or material prime for gamma interactions (²³⁵U, ²³⁹Pu)

Neutrons and Photons as NDA Signatures

- Nucleus (gamma-ray)
- Nuclear collision (gammaray)
- Electron cloud (x-ray)

Energy

High Z material

HPGe, Scintillators, Nal, CZT, LaBr

History of Neutron Counting for NDA

TOTAL NEUTRON

- Record the total number of neutrons detected in a certain amount of time
- Accurate assays can be obtained only for very few types of SNM

COINCIDENCE COUNTING

- Record the number of times two neutrons arrive within a set time window (gate)
- Wide application for international safeguards
 - focused on verifying declared materials

NEUTRON MULTIPLICITY COUNTING

- Extension of neutron coincidence counting
- Record the number of times we detect 2, 3, 4, etc. neutrons within a gate
- It improves neutron assay accuracy dramatically by adding more measured information

Neutron Coincidence Counter

Pulse-processing Electronics

- ³He neutron detectors
- Fission source (Pu) surrounded by neutron detectors
- Emission of multiple prompt neutrons from fission detected as coincident neutron events
- Multiplicity information is used to calculate the mass of fissile isotopes

Neutron Coincidence Counting

Neutron Coincidence Counting

Spontaneous Fission

Detected **Neutrons**

Rossi-Alpha Distribution

Epithermal Neutron Multiplicity Counter (ENMC)

- $\varepsilon = 65.0\%$
- $\tau = 22.0 \, \mu sec$
- 121 tubes
- 27 preamplifier channels

FRAM

- FRAM is an isotopic analysis code nominally designed for plutonium and uranium.
- Fixed-energy Response-function Analysis with Multiple efficiencies.
- Self-calibration using several gamma-ray peaks.
- Analyze gamma ray data from 30keV to >1MeV of HPGe, CdTe, CZT, and LaBr3 detector.

Spent Fuel Characterization

Power Reactor vs. Research Reactor

Why are these two VERY different characterization problems?

	Power	Research
Size	~4 m long, 20 cm across, 1000 lbs	~80 cm long, 8 cm across, 13 lbs
Neutrons	~1E8 1/s	~1E4 1/s
Neutron Emitters	²⁴² Cm, ²⁴⁴ Cm, ²⁴⁰ Pu	²⁴⁰ Pu
Operating History	Predictable, \$\$\$	Unpredictable, research
Easy Availability of Calibration Standards?	Nope!	Nope!

Passive Gamma Emission Tomography (PGET)

- Three simultaneous measurements: gross neutron, gamma spectroscopy, and 2D emission tomography
- Create an axial image of emission locations to detect pinlevel diversions
- Measurements take 3-5 minutes

Mayorov et al., IEEE, 2017

- Neutron data are used for BU, spectroscopy data for CT or to verify non-fuel items
- Has been tested for burnups from 5.7-58 GWd/tU and cooling times from 1.9-27 years

Advanced Experimental Fuel Counter

- Designed for research reactor spent fuel characterization
- System uses:
 - Active and passive neutron coincidence counting
 - An ion chamber for gross gamma-ray counting
- Measurement objective is to verify residual fissile mass (i.e., ²³⁵U + ²³⁹Pu) using active neutron interrogation
- Field trials have occurred as follows:
 - 2006 High Flux Australian Reactor (HIFAR), Australia
 - 2011 Institute of Nuclear Physics (INP), Uzbekistan
 - 2014 Institute of Nuclear Physics (INP), Uzbekistan
 - 2018 Soreq Nuclear Research Center (SNRC), Israel

Advanced Experimental Fuel Counter

 Measure top, middle, and bottom of assemblies with active and passive interrogation

Advanced Experimental Fuel Counter

Active Doubles - Passive Doubles - Cf Doubles = Net Active Doubles

- Net active doubles rate is proportional to residual fissile mass
- But it can vary! Control rod insertion, operating history, assembly rotation, cooling time, can all affect the doubles rate relative to the fissile mass

Thank you!

Questions?

